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Hippocampus Segmentation using Patch-based
Representation and ROC Label Enhancement
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Abstract—Brain Magnetic Resonance Imaging (MRI) is a
quantitative neuroimaging technique to support anatomical
structure segmentation. Still, proper segmentation requires
modeling small MRI regions, not to mention the class imbalance
issue that yields false-positive predictions. This work introduces
a Patch-based Segmentation with a Label Enhancement ap-
proach, termed PSLE, for improved MRI-based hippocampus
segmentation, by combining different texture filters to capture
salient patch relationships. First, we select target-related regions
to perform a convex candidate combination for label estimation.
Next, we improve the overall performance by fitting the decision
threshold based on the Receiver Operating Characteristic
(ROC) curve, tackling the class imbalance problem. In the
middle, we analyze the effect on the performance metrics
of the primary hyperparameters and stages (ablation study).
Finally, the state-of-the-art methods are compared with multi-
atlas segmentation and deep learning algorithms in three well-
known hippocampus segmentation benchmark MRI collections:
LONI, ADNI, and SATA.

Index Terms—Hippocampus segmentation, Texture features,
Patch-based representation, Label enhancement, MRI.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) segmentation is es-
sential in clinical applications like detecting soft-tissue le-
sions and monitoring pathology progression [1]. Further-
more, for diseases like Alzheimer’s, Schizophrenia, and
Parkinson’s, MRI segmentation assists the diagnosis and
treatment by providing quantitative knowledge about the
brain structures [2], [3], [4]. However, traditional manual
delineation by expert clinicians is time and resource con-
sumption, making such an approach unfeasible for large
datasets and time-constrained applications [5]. Besides, the
segmentation quality depends on the clinician’s experience,
knowledge, and carefulness [6], [7]. The above constraints
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and drawbacks made the development of automatic seg-
mentation methodologies relevant for medical and image
processing fields. Still, the fuzzy boundaries between struc-
tures challenge the automatic segmentation task due to their
complex spatial dependencies, size and shape variance, and
inhomogeneous magnetic properties [8]].

Recent approaches address brain segmentation through
deep learning (DL) [9]]. Nevertheless, the memory require-
ment for learning 3D segmentation states an implementation
drawback, even for models with a few layers. As an alter-
native, the DL approaches of Extended 2D Consensus Hip-
pocampus Segmentation (E2D-Hipseg) [[10], FastSurfer [[11],
Ataloglou [9], and Multi-Model Deep CNN (MMDC) [12]
process the MRIs slice-wise along a given axis view. How-
ever, despite their suitable performance scores, such DL
approaches demand a large amount of annotated data to
yield reliable results in testing scenarios, which is hard to
accomplish in medical imaging. Further, the small size of
target structures yields class-imbalanced datasets that hamper
the model’s reliability [13], [14].

As a counterpart, Multi-Atlas Segmentation (MAS) lacks
the above issues as it incorporates prior information through
pre-segmented images, composing atlases from clinical
knowledge as medical instances or templates [15]. MAS
comprises two steps: firstly, image registration maps each
atlas to the target image, and secondly, label fusion predicts
each voxel’s class. As a result, such approaches account for
considerable anatomical variability from a few representative
instances. Furthermore, the image processing in the target
coordinate space raised an alternative MAS that weights
templates according to their similarity to the target image,
yielding subject-specific strategies that also tackle the intra-
subject variability [16]. However, the dependence on the
atlas-to-target registration reduces the segmentation accuracy
in the presence of unrepresented anatomical differences that
misaligns images [17]].

Regarding this, patch-based segmentation strategies reduce
the abovementioned issues by labeling voxels depending
on intensity-based similarities over a predefined neighbor-
hood. Some representative patch-based algorithms include
the weighted voting strategy [18], the partially-localized
random forests [19]], the patch-wise metric learning with
multi-scale features [20], and the labeling enhancement [21]].
Nonetheless, as a price for the reduced registration depen-
dence, most patch-based approaches demand more training
voxels [22]].

This work introduces a patch-based label fusion approach
for MRI segmentation, considering enhanced specificity and
sensitivity thresholding, termed Patch-based Segmentation
with a Label Enhancement (PSLE). First, the proposal selects
patches and extracts their multi-scale intensity and texture
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features from the original image space [8]. Afterward, a
knearest neighbor (ENN) classifier coarsely labels target
voxels according to similarities in the feature space. In
turn, the Received Operating Characteristic (ROC) curve
allows for choosing the best-performed threshold to refine
the coarse labeling [23]. Of note, hyperparameter tuning
and ablation analysis are carried out. Mainly, we analyze
the influence of the number of nearest neighbors for the
kNN algorithm, the number of most similar atlases, and
the patch and neighborhood radius. In addition, the ablation
study evaluates the main model stages’ influence on the fi-
nal segmentation. Finally, performance comparison incorpo-
rates multi-atlas segmentation and deep learning algorithms
in three well-known MRI-based hippocampus segmentation
databases: LONI, ADNI, and SATA.

In a nutshell, our PSLE contribution is threefold: i)
Employment of the Tanimoto similarity index on the orig-
inal MRI intensity space to reject the unrepresentative
patches [24]; ii) Augmented data representation using multi-
scale and texture features to improve the discrimination
between samples of different classes; and iii) Label enhance-
ment based on ROC trade-off for MRI-based hippocampus
segmentation.

The remainder of this paper is organized as follows:
Section formulates the proposed approach. Section |[III
explores the experiments and results. Lastly, Section
outlines the concluding remark.

II. MATERIALS AND METHODS
A. Datasets

This work considers the following datasets for assessing
the hippocampus segmentation (see Figure [I):

— Segmentation Algorithms, Theory and Applications
(SATA): a publicly available collection created for as-
sessing the image segmentation of blind-folded data.
SATA holds 35 T1 MRIs-based manually delineated
hippocampus.

— Laboratory of Neuro-Imaging (LONI) [25]: It assem-
bles 40 T1-Weighted MRI brain images collected from
healthy volunteers (20 males and 20 females), aging
from 20 to 40 years.

— Alzheimer’s Disease Neuroimaging Initiative (ADNI):
This database gathers imaging biomarkers, biosignals,
and neuropsychological tests to characterize dementia
patients. 100 T1 MRIs are selected from healthy sub-
jects, holding their hippocampus masks. The subject’s
average age is 80 years old (49% male).

B. Patch-based Segmentation with Label Enhancement

Let X = {z; € R : t € §2} be an intensity MRI,
being x; = X(t) the voxel intensity at the ¢-th coordinate
over the spatial domain (2. Provided a set of tissue classes,
the segmentation task assigns a label I, € C to the t-
th voxel resulting in a semantic volume £ = {l; € C}.
Without loss of generality, this work states the binary case of
hippocampus segmentation, so that C = {0, 1}. The proposed
methodology, termed Patch-based Segmentation with a Label
Enhancement (PSLE), solves the hippocampus segmentation
following the pipeline in Figure [2}

Coronal

ADNI

LONI

SATA

Fig. 1: Tested datasets for hippocampus segmentation. Some
exemplary MRIs are depicted for ADNI, LONI, and SATA
databases. Axial, Coronal, and Sagital views are presented
for a given patient on each set, highlighting in green the re-
gion of interest concerning the hippocampus brain structure.

a) Preprocessing: that comprises motion correction and
non-uniform intensity enhancement to mitigate blurring and
Rician noise artifacts. The preprocessing stage maps MRIs
to the Talairach space for spatial consistency over different
atlases using histogram matching-based global and local
affine registrations. Next, the Freesurfer and the BRAINSFit
tools apply intensity normalization and skull stripping.

b) Atlas and voxel selection: uses the cross-modal mu-
tual information (CMMI) measure to quantify the similarity
between a target image X, and the intensity-label atlas pair
A ={X, L}, as follows [26]:

CMMI(X,, X) = H(X,) + H(X) — H(X,,X), (1)

where H(-) is the Shannon entropy operator. For coping with
multi-atlas disagreement errors (different labels for a given
voxel), the approach computes CMMI only at voxels with
partial label agreement. Generally, such voxels belong to the
tissue boundary and hold a high label and intensity variabil-
ity. Label agreement is calculated as max.E,{P(l} = ¢)},
where P(I} = ¢) € [0,1] is the class probability of atlas n
at location ¢. E{-} stands for the expected operator.

c) Patch-based feature extraction: gathers patch-label
pairs (Ps, Is) from T training atlases inside the neighborhood
of the target voxel z;, with P, € REXEXE a5 the R-
sided cubic patch centered at s. Further, a patch pre-selection
procedure discards less reliable patches, with the advantage
of decreasing the computational burden. The pre-selection
employs the Tanimoto Similarity Index (TSI) due to its
computational simplicity and benefits in quantifying data
correspondence [24]:

(£, £')

ST = i) @y

2
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Fig. 2: PSLE pipeline for hippocampus segmentation.

being f,f’ € RY a pair of feature vectors. Since patch
intensity-based features lack the discrimination of adjacent
structures sharing intensity patterns from MRIs [20]], the
pre-selection introduces the following texture and gradient
features in multi-scaled intensity from a given image X [8].

First order difference filters (FODs) that are capable of
detecting coarse intensity changes along a line segment
without considering its central value:

FODs(t,u) = X(t +u) — X(t — u), 3)
where u = (7 cos(0) sin(¢), rsin(0) cos(@), r cos(¢)), r €
R™T is set as the patch radius, and the angles ¢,0 € [—, 7]
are fixed such that all elements in the patch are taken into
account to compute the differences.

Second order difference filters (SODs) are employed to
detect fine intensity changes along a line segment:
SODs(t,u) = X(t +u) + X(t —u) — 2X(t). (4
Centralized difference filters (CDFs) catch the signed dis-
tances from the central voxel and its surrounding neighbors:
CDFs(t, t') = X(t) — X(t'), Vt' € Q(t); (5)
where Q(t) gathers the patch positions centered at t.
Centralized Euclidean distance (CED) captures the dis-
tance from the center to all voxels within Q(¢):

>

vt €Q(t)

CED(t,t) X)) (6)

Range difference filters (RDFs) compute the patch’s range
value centered at ¢:

RDFs(t) = max(P(t)) — min(P(t)). (7

Local binary patterns (LBP) code center-referenced neigh-
bor relations by generating a binary patch. Let & be a binary
patch such that Z(t') = 1, if P(t') > P(t); otherwise,
P(t') = 0. Then, LBP can be obtained by the following
linear combination:

LBP(t) = vec(%) " vec ({2 }I%’I) . (8)

Inter-Slice patch Frobenius distance (ISFD) obtains the
distance from two Saggital slices aside ¢ position:

ISFD(t, @) = ||S(t — @) — S(z + @)|| )

being & = (0,0, 1), S(¢) is a 2D Saggital patch slice centered
at ¢, and || - || is the Frobenius norm.

Inter-Slice patch cosine similarity (ISCS) calculates a
normalized positive defined similarity from two Saggital
slices aside ¢ position, yielding:

V(ST —a)S(t + a)
ISt — @) plIS(t+a)lr

The outputs of all the above descriptors are concatenated
to form a feature vector f;.
d) Label prediction and ROC-based enhancement:
This stage segments a query MRI by solving a voxel-wise
classification problem using a k-nearest neighbors (k-NN)

ISCS(t, @) = (10)
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classifier. It fuses candidate labels into likelihoods p; € R
using the normalized convex label combination:

B = ZkK}l Wt kYk
Dim1 Wk

where y, € C holds the k-th neighbor label and weights

results from the RBF kernel as w; = exp (_”%}f’“”g),

with 0 € R* as the kernel bandwidth. Lastly, an e-based
thresholding yields the hard label prediction:

) {1 if 5, > e

; (1)

= 12
K 0 otherwise. (12)

The ¢ € RT threshold plays an essential role in label
prediction. Its typical value of 0.5 assumes balanced classes,
which underperforms for complex shapes and relatively
small structures, i.e., the hippocampus. Therefore, this work
proposes to maximize the True Positive Rate (TPR) over the
False Positive Rate (FPR) ratio w.r.t. the threshold as:

. TPR(e)
€ = argmax FPR(e)’

e) Tuning and validation: A leave-one-subject-out
strategy assesses the segmentation performance in terms of
four different metrics: Dice Similarity Index (DSI), Jaccard
Similarity Index (JSI), Precision Index (PSI), and Recall
Index (REC) [23].

13)

III. RESULTS AND DISCUSSION

This section presents the methodology results in terms
of interpretability and segmentation performance. For com-
parison purposes, this work considers the four MAS tech-
niques Majority Voting (MV) [27], Local Weighted Voting
(LWV) (28], Non-Local Weighted Voting (NLWYV) [29],
and Joint Label Fusion (JOINT) [30], and two DL models
E2DHipseg [10] and FastSurfer [[11] . PSLE, MV, LWV, and
NLWYV were implemented using the Insight Toolkit (ITK-
5.0) and the linear algebra library Eigen-3.3.9, while JOINT
using the Advanced Normalization Tools package. Namely,
several performance metrics describe the influence of the hy-
perparameter tunning over the PLSE, and an interpretability
analysis quantifies the effect of each proposed stage on each
dataset. Finally, we compare state-of-the-art hippocampus
segmentation models against our proposed PLSE.

A. PSLE Hyperparameter Analysis

Figure 3] presents the PSLE segmentation performance
concerning the number of nearest neighbors for the k-NN
classifier. At first glance, the larger the number of neighbors,
the larger the dispersion of the performance metric. Further,
the JSI evidences that the false positive rate grows faster
than the false negative rate with the number of neighbors.
Hence, including fewer related candidate labels decreases the
segmentation quality. We fix the neighbors to 12, 17, and 7
for SATA, LONI, and ADNI, respectively.

Likewise, Figure [] illustrates the influence of the number
of atlases, path and neighborhood radius size, and the ROC
thresholding for segmentation performance enhancement for
all considered datasets. Figure [a] presents the influence of
the number of selected atlases in PSLE, ranging from 2 to 25.
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Fig. 3: Number of nearest neighbors for the kNN classifier.
We searched k € {2,7,12,17,22, all}, where all refers to
the total number of training samples for the given test voxel,
showing REC, PSI, JSI, and DSI indices for hippocampus
segmentation in three different datasets, SATA, LONI and
ADNI, plotted versus the number of nearest neighbors.
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Figure 3a highlights that in most cases, PSLE early reaches
the maximum values for both JSI and DSI indices. This
fact suggests that too many atlases, instead of producing a
performance enhancement, detriment the labeling quality due
to unrepresentative atlases introducing noise. On the other
hand, REC and PSI curves describe an opposed behavior as
the number of atlases rises; that is, PSI increases, whereas
REC drops. These tendencies indicate a shrunk segmentation
volume for larger atlas sets, also a hint of under-segmentation
in the presence of anatomical variability.

Regarding the patch and neighborhood radius tuning, the
optimal radii depend on the labeling method, atlas selection,
and registration. We assess the PSLE performance for a patch
radius size of 7, € {1,2} (ranging from 3 x 3 x 3 till 5 x
5 x 5 voxels) and neighborhood radius size v, € {1,2,3,4}
(ranging from 3 x 3 x 3 till 9 x 9 x 9 voxels). Figure [4b|
depicts DSI and JSI reaching the maximum values at a
neighborhood radius equal to 2 (a total volume of 5 x 5 X
5). Further, they remain relatively constant, meaning that the
misalignment produced by the affine registration demands a
larger explored neighborhood. Contrarily, large patches miss
fine tissue properties.

Since the proposed methodology aims at the ROC-based
label enhancement, PSLE is tested by varying the e threshold
within the range [0.1,0.9] to find a trade-off between model
sensitivity and specificity. As evidenced in Figure PSLE
attains suitable ROC curves for all considered databases, with
Area Under the ROC (AUC) values larger than 80%. Further,
the optimal segmentation threshold, denoted as a bullet mark,
results in €* as 0.41, 0.35, and 0.43 for SATA, LONI, and
ADNI, respectively. Note that optimal thresholds are far from
the standard value of 0.5 for label estimation, proving the
benefits of the proposed ROC-based label enhancement.

For visual assessment, Figure Ebresents the best and
worst segmentations for PLSE, E2Dhipseg, and FastSurfer.
In general, mislabeling arise around the tissue boundaries
as initially expected. Nonetheless, PLSE stands out as the
most consistent approach through all datasets, as it performs
comparably better in its worst cases than state-of-the-art
approaches, evidencing a generalization gain. Further, the
worst-segmented subjects and the best in LONI exhibit an
under-segmentation that can be effortlessly explained ow-
ing to the sensitive nature of the manually labeled region.
Contrarily, the best-labeled SATA and ADNI subjects depict
minor errors, equally distributed in false positives and false
negatives. Therefore, the proposed PSLE is more reliable
as errors evenly distribute over the datasets, images, and
performance metrics.

B. Ablation Study

We analyze the influence of the PSLE stages (see Figure[2)
on hippocampus segmentation performance for fixed input
parameters. Table [I| quantitatively evaluates the effect of
progressively introducing each stage into the processing
pipeline. The most evident result is the successive improve-
ment in performance for SATA and ADNI while including
each stage, resulting in an average enhancement of around
3% and 5%, respectively. Instead, LONI describes an odd
behavior due to the preselection step that reduces the im-
provement of the kKNN-based estimator, suggesting a lack

SATA LONI ADNI
907\ .,‘\—.\-.-\"\._l-l: [ T T T T l [ T T T T ]
go T S e B o RS |
ol et I I Ry o
é é § 12 1‘5 fs 2194 3 é 5 12 1‘5 1‘8 2124 :% é 9 12 ‘5 fg 2124
Number of most similar atlases
|---DSI--- JSI--- PSI-- REC|
(a) Number of considered atlases.
DSI JSI PSI REC
— T Z 83 ‘ ]

88} 379
T g e
, 4

1 2 3
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(b) Patch and neighborhood radius size.
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(c) Thresholding and ROC-based enhancement.

Fig. 4: Performance metrics for the PSLE hyperparameter
analysis as a function of the number of considered atlases
(top), patch and neighborhood radius (middle), and labeling
threshold (bottom).

of heterogeneity in training samples for most target voxels.
For example, the feature extraction stage decreases recall by
12% but increases precision by about 10%. It means that seg-
mented volume size decrement tremendously by adding tex-
ture and gradient features, which could be a consequence of
the manual segmentation sharpness in the database. Finally,
the joining of ROC-based label correction discovers a proper
trade-off between REC and PSI indices. Such compensation
allows an enhancement of around half percent in DSI and
JSI indices while a 4% in the recall. In general, each of
the introduced stages provides a complementary alternative
for improving segmentation performance in both average and
standard deviation for all metrics and databases, becoming a
progressively strengthened segmentation approach.

C. Method Comparison Results

Finally, Table |lI| compares the segmentation metrics of
considered approaches. Overall metrics, the proposed PSLE
outperforms other atlas-based strategies, thanks to the ROC-
based label enhancement stage. Particularly for precision,
JOINT improves PSLE at the cost of an over-segmentation.
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Fig. 5: Visual inspection results. PSLE (ours), E2DHipseg,
and FastSurfer approaches are compared. The best (top row)
and worst (bottom row) samples are presented for each
database (SATA, LONI, and ADNI), denoting in green,
blue, and red the correctly labeled (true positives), under-
segmented (false negatives), and over-segmented (false pos-
itives) voxels, respectively.

TABLE I: Influence of PSLE stages in the hippocampus seg-
mentation performance. Pre-selection, Patch-based feature
extraction, and ROC-based estimation correction are studied.

Method \ DSC JSI PSI REC

SATA

Baseline 84.0 £ 2.56 72.5 £ 3.79 83.5 £ 4.07 84.6 £ 3.60

Preselection 845+ 227 733 £+ 341 851 + 335 84.2 + 3.64

Feature extraction | 85.0 + 2.05 74.0 £ 3.10 86.1 4+ 3.06 84.2 £+ 3.31

ROC enhancement | 86.3 & 1.83 76.0 & 2.83 85.3 £ 2.58 87.4 & 2.53
LONI

Baseline 80.7 £243 67.8 £341 792 £5.52 829 £ 4.23

Preselection 80.7 £ 243 67.7 £3.39 792 £5.57 82.7 &+ 441

Feature extraction | 78.4 + 2.45 64.5 + 3.28 89.0 + 4.21 70.3 £+ 4.87

ROC enhancement | 83.0 & 2.12 70.9 & 3.07 80.7 & 3.47 85.4 4 2.30
ADNI

Baseline 77.7 £ 5.66 63.9 4+ 7.37 76.8 & 6.77 78.8 + 5.81

Preselection 78.0 =544 642 +7.10 77.1 = 6.47 79.1 &+ 5.78

Feature extraction | 80.9 + 4.90 68.2 + 6.63 80.1 £+ 6.03 81.9 + 4.69

ROC enhancement | 82.6 & 4.57 70.6 & 6.33 81.2 &+ 6.13 84.1 & 3.88

Regarding the DL approaches, E2DHipseg reaches the high-
est scores in the ADNI dataset, mainly because the deep
network was trained on such a large dataset. Nonetheless,
E2DHipposeg underperforms the MAS approaches in SATA
and LONI, proving the lack of generality. Similarly, Fast-
Surfer reaches its best performance on the SATA dataset, but
loses considerable performance over LONI dataset. Hence,
the proposed PSLE yields the most balanced performance
with an improved generalization of the segmentation task.

TABLE 1II: MRI-based hippocampus segmentation results.
Method comparison is shown concerning the mean + stan-
dard deviation of the considered performance measures.

Method |  DSI JSI PSI REC

SATA

MV [27 773+ 472 632 +610 812+ 640 739 £ 4.92

LWV 28] | 787 £5.04 652+ 663 81.0=L 661 768+ 520

NLWV | 788 £ 472 653 + 624 83.6 + 6.18 74.9 + 5.73

JOINT [30] | 85.1 =254 742 % 3.81 889 &+ 3.13 81.8 & 3.57

E2DHipseg[10] | 78.6 & 0.26 64.8 + 0.35 84.8 + 0.37 73.3 + 0.28

FastSurfer [11] | 80.01 & 0.17 66.8 £ 024 89.9 &£ 031 72.3 + 0.25

PSLE (ours) | 86.3 & 1.83 76.0 + 2.83 85.3 £ 2.58 87.4 + 2.53
LONI

79.6 £ 240 662 £330 82.7 £4.80 77.1 £ 4.20

80.1 &= 223 66.8 & 3.22 82.5 £ 4.65 78.1 + 4.13

799 X 242 66.6 £ 334 834+ 446 77.1 L 4.86

829 £ 2.10 709 * 3.06 862 + 428 80.1 + 3.64

E2DHipseg| mJ 526 & 041 358 £ 038 665 L 044 43.1 + 0.51

FastSurfer [11] | 57.0 & 0.29 399 &£ 028 587 & 031 55.5 & 045

PSLE (ours) | 83.0 &£ 2.12 709 + 3.07 807 + 3.47 854 & 2.30
ADNI

749 £ 544 602 + 6.88 78.1 £ 749 72.4 + 623

758 £ 528 613 + 678 78.5 & 746 73.6 + 5.67

743 + 498 594 £ 625 8050+ 6.52 69.5 + 6.02

81.0 = 555 68.5+ 7.42 847 + 644 77.8 + 6.05

90.0 & 1.00 845+ 1.00 90.7 & 0.7 91.8 & 0.85

790 £ 042 655 L£050 712 £ 050 89.0 L 0.30

PSLE (ours) | 825+ 457 705 % 6.33 812 % 6.13 84.1 + 3.88

IV. CONCLUSIONS

We introduce an MRI-based hippocampus segmentation
approach named Patch-based Segmentation with a Label
Enhancement (PSLE). Our proposal employs a multi-atlas
strategy coupled with multi-scale and texture features to
reveal relevant relationships among subjects and patches.
Besides, PSLE allows coding essential inner-patch informa-
tion that enables proper candidate label combination and
ROC-based enhancement to deal with unbalanced classes,
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outliers, and edge sharpness. Moreover, the experimental
analysis of the primary PSLE hyperparameters yields a suit-
able performance for three well-known MRI databases, e.g.,
SATA, LONI, and ADNI. The further ablation study demon-
strated that each considered stage complementary supports
the hippocampus segmentation. In particular, ROC-based
label enhancement discovers a proper trade-off between REC
and PSI indices, supporting hippocampus detection. In turn,
method comparison included multi-atlas and deep learning
algorithms. Obtained results proved PSLE as a suitable multi-
atlas alternative for brain structure segmentation from MRIs,
outperforming multi-atlas approaches and being competitive
against more elaborated deep learning methods.

For future work, the authors plan to join the ROC-based
enhancement within DL strategies to take advantage of the
data-driven feature extraction without hampering general-
ization. Then, we will couple loss functions devoted to
imbalance classification [31] and DL approaches for feature
representation [32]] to improve boundary delineation of small
structures.

REFERENCES

[1] M. Z. Khan, M. K. Gajendran, Y. Lee, and M. A. Khan, “Deep neural
architectures for medical image semantic segmentation: Review,” IEEE
Access, vol. 9, no. 1, pp. 83002-83 024, 2021.

[2] J. Shi, R. Zhang, L. Guo, L. Gao, H. Ma, and J. Wang, “Discriminative
feature network based on a hierarchical attention mechanism for
semantic hippocampus segmentation,” IEEE Journal of Biomedical
and Health Informatics, vol. 25, no. 2, pp. 504-513, 2021.

[3] A. Desiani, B. Suprihatin, S. Yahdin, A. I. Putri, F. R. Husein et al.,
“Bi-path architecture of cnn segmentation and classification method
for cervical cancer disorders based on pap-smear images.” IAENG
International Journal of Computer Science, vol. 48, no. 3, pp. 782—
791, 2021.

[4] M. Marwan, F. AlShahwan, F. Sifou, A. Kartit, and H. Ouahmane,
“Improving the security of cloud-based medical image storage.” En-
gineering Letters, vol. 27, no. 1, pp. 175-193, 2019.

[5] R. Yang and Y. Yu, “Artificial convolutional neural network in object
detection and semantic segmentation for medical imaging analysis,”
Frontiers in Oncology, vol. 11, no. 1, p. 573, 2021.

[6] Z.Z. Zhijun Luo and B. Zhang, “An scadtv nonconvex regularization
approach for magnetic resonance imaging,” IAENG International
Journal of Computer Science, vol. 48, no. 4, pp. 1013-1020, 2021.

[7] D. Karimi, H. Dou, S. K. Warfield, and A. Gholipour, “Deep learning
with noisy labels: Exploring techniques and remedies in medical image
analysis,” Med. Image Anal., vol. 65, no. 1, p. 101759, 2020.

[8] P.Yi, L. Jin, T. Xu, L. Wei, and G. Rui, “Hippocampal segmentation in
brain mri images using machine learning methods: A survey,” Chinese
Journal of Electronics, vol. 30, no. 5, pp. 793-814, 2021.

[9] D. Ataloglou, A. Dimou, D. Zarpalas, and P. Daras, “Fast and precise
hippocampus segmentation through deep convolutional neural network
ensembles and transfer learning,” Neuroinformatics, vol. 17, no. 4, pp.
563-582, 2019.

[10] D. Carmo, B. Silva, C. Yasuda, L. Rittner, and R. Lotufo, “Hippocam-
pus segmentation on epilepsy and alzheimer’s disease studies with
multiple convolutional neural networks,” Heliyon, vol. 7, no. 2, p.
¢06226, 2021.

[11] L. Henschel, S. Conjeti, S. Estrada, K. Diers, B. Fischl, and M. Reuter,
“Fastsurfer - a fast and accurate deep learning based neuroimaging
pipeline,” Neurolmage, vol. 219, no. 2, p. 117012, 2020.

[12] M. Liu, F. Li, H. Yan, K. Wang, Y. Ma, L. Shen, and M. Xu, “A multi-
model deep convolutional neural network for automatic hippocampus
segmentation and classification in alzheimer’s disease,” Neurolmage,
vol. 208, no. 1, p. 116459, 2020.

[13] E. Tappeiner, M. Welk, and R. Schubert, “Tackling the class imbalance
problem of deep learning-based head and neck organ segmentation,”
International Journal of Computer Assisted Radiology and Surgery,
vol. 17, no. 11, pp. 2103-2111, 2022.

[14] S. Asgari, K. Abhishek, J. Cohen, J. Cohen-Adad, and G. Hamarneh,
“Deep semantic segmentation of natural and medical images: a re-
view,” Artificial Intelligence Review, vol. 54, no. 1, pp. 137-178, 2021.

[15] Y. Zhang, J. Duan, Y. Sa, and Y. Guo, “Multi-atlas based adaptive
active contour model with application to organs at risk segmentation
in brain mr images,” IRBM, vol. 43, no. 3, pp. 161-168, 2022.

[16] L. Sun, W. Shao, M. Wang, D. Zhang, and M. Liu, “High-order
feature learning for multi-atlas based label fusion: Application to
brain segmentation with mri,” IEEE Transactions on Image Processing,
vol. 29, no. 1, pp. 2702-2713, 2020.

[17] M. Antonelli, M. J. Cardoso, E. W. Johnston, M. B. Appayya,
B. Presles, M. Modat, S. Punwani, and S. Ourselin, “Gas: A genetic at-
las selection strategy in multi-atlas segmentation framework,” Medical
Image Analysis, vol. 52, no. 1, 2019.

[18] J. E. Iglesias and M. R. Sabuncu, “Multi-atlas segmentation of
biomedical images: a survey,” Medical image analysis, vol. 24, no. 1,
pp- 205-219, 2015.

[19] Q. Zheng and Y. Fan, “Integrating semi-supervised label propagation
and random forests for multi-atlas based hippocampus segmentation,”
in 2018 IEEE 15th International Symposium on Biomedical Imaging,
ISBI 2018, Washington, DC, USA, 4-7 April, 2018, pp. 154-157.

[20] Y. Wang, G. Ma, X. Wu, and J. Zhou, “Patch-based label fusion with
structured discriminant embedding for hippocampus segmentation,”
Neuroinformatics, vol. 16, no. 3-4, pp. 411-423, 2018.

[21] L. Sun, C. Zu, W. Shao, J. Guang, D. Zhang, and M. Liu, “Reliability-
based robust multi-atlas label fusion for brain mri segmentation,”
Artificial intelligence in medicine, vol. 96, pp. 12-24, 2019.

[22] D. Cardenas-Pefia, A. Tobar-Rodriguez, G. Castellanos-Dominguez,
and A. D. N. Initiative, “Adaptive Bayesian label fusion using kernel-
based similarity metrics in hippocampus segmentation,” Journal of
Medical Imaging, vol. 6, no. 1, p. 014003, 2019.

[23] A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, 2nd ed. O’Reilly Media, Inc., 2019.

[24] D. C. Anastasiu and G. Karypis, “Efficient identification of tanimoto
nearest neighbors,” International Journal of Data Science and Analyt-
ics, vol. 4, no. 3, pp. 153-172, 2017.

[25] D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Sala-
mon, K. L. Narr, R. A. Poldrack, R. M. Bilder, and A. W. Toga,
“Construction of a 3d probabilistic atlas of human cortical structures,”
Neuroimage, vol. 39, no. 3, pp. 1064-1080, 2008.

[26] X. Zhuang and J. Shen, “Multi-scale patch and multi-modality atlases
for whole heart segmentation of mri,” Medical image analysis, vol. 31,
no. 1, pp. 77-87, 2016.

[27] R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Ham-
mers, “Automatic anatomical brain mri segmentation combining label
propagation and decision fusion,” Neurolmage, vol. 33, no. 1, pp. 115—
126, 2006.

[28] X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz-de Solérzano,
“Combination strategies in multi-atlas image segmentation: application
to brain mr data,” IEEE transactions on medical imaging, vol. 28,
no. 8, pp. 1266-1277, 2009.

[29] P. Coupé, J. V. Manjon, V. Fonov, J. Pruessner, M. Robles, and D. L.
Collins, “Patch-based segmentation using expert priors: Application to
hippocampus and ventricle segmentation,” Neurolmage, vol. 54, no. 2,
pp. 940-954, 2011.

[30] H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, and P. A.
Yushkevich, “Multi-atlas segmentation with joint label fusion,” IEEE
PAMI, vol. 35, no. 3, pp. 611-623, 2013.

[31] C. Jimenez-Castano, A. Alvarez-Meza, and A. Orozco-Gutierrez,
“Enhanced automatic twin support vector machine for imbalanced data
classification,” Pattern Recognition, vol. 107, no. 1, p. 107442, 2020.

[32] C. Jimenez-Castafio, A. Alvarez Meza, O. Aguirre-Ospina,
D. Cardenas-Pefia, and A. Orozco-Gutierrez, “Random fourier
features-based deep learning improvement with class activation
interpretability for nerve structure segmentation,” Sensors, vol. 21,
no. 22, p. 7741, 2021.

International Association of Engineers

510



Copyright of Engineering Lettersis the property of Newswood Limited and its content may
not be copied or emailed to multiple sites or posted to alistserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.



